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Abstract

In this paper, we propose a novel method to improve the per-
formance and robustness of the front-end text processing mod-
ules of Mandarin text-to-speech (TTS) synthesis. We use pre-
trained text encoding models, such as the encoder of a trans-
former based NMT model and BERT, to extract the latent se-
mantic representations of words or characters and use them as
input features for tasks in the front-end of TTS systems. Our
experiments on the tasks of Mandarin polyphone disambigua-
tion and prosodic structure prediction show that the proposed
method can significantly improve the performances. Specifi-
cally, we get an absolute improvement of 0.013 and 0.027 in
F1 score for prosodic word prediction and prosodic phrase pre-
diction respectively, and an absolute improvement of 2.44% in
polyphone disambiguation compared to previous methods.
Index Terms:Text to Speech Front-End, Polyphone Disam-
biguation, Prosodic Structure Prediction, Pre-trained Text Rep-
resentation

1. Introduction

Recently, great progress has been made in the field of text-
to-speech (TTS). The speech synthesized by recently proposed
end-to-end acoustic models (e.g. Tacotron [1], transformer TTS
[2], etc) and neural vocoders (e.g. WaveNet [3], WaveRNN [4],
WaveGlow [5] etc) is almost undistinguishable from recorded
human speech. However, the text processing module, a.k.a. the
front-end, still plays an important role in the TTS system, espe-
cially in Mandarin TTS, since the limited training data in most
of the TTS tasks is unable to cover the variety in input text to be
synthesized.

The front-end of TTS aims to extract various linguistic and
phonetic features from the raw text, in order to improve the
naturalness and intelligibility of the synthesized speech. The
front-end of a Mandarin TTS system contains a series natural
language processing (NLP) modules, including text normaliza-
tion (TN) [6], Chinese word segmentation (CWS) [7], part-of-
speech (POS) tagging [8], polyphone disambiguation (PPD) [9]
and prosodic structure (PS) prediction [10] etc.

Previous researches on the TTS front-end can be divided
into two categories. One is the traditional statistical methods,
such as maximum entropy (ME) [11, 12, 13], conditional ran-
dom field (CRF) [14] and Classification And Regression Tree
(CART) [15], using manually designed linguistic features, e.g.
POS, word-terminal syllables, word context etc. The main prob-
lem of these methods is that they require the knowledge of lin-
guistic experts to design task relevant features. The other cat-
egory includes recurrent neural network (RNN) based methods
[16, 17, 18]. An RNN with gated cells, e.g. long-short term
memory (LSTM) [19] and gated recurrent unit (GRU) [20], is a
sequential model which has been successfully applied to speech
and NLP tasks. These RNN based models can be learned in an
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end-to-end manner with manually designed feature. The main
drawback of RNN based method is that it usually requires large
amount of training data to achieve good performance and gen-
eralization. However, the amount of training data in most of the
TTS front-end tasks is usually very limited. Therefore, RNNs
usually work with pre-trained word-level or character-level em-
bedding representations (e.g. word2vec [21]) to improve the
generalization of the learned models. Another existing problem
is that long-term context dependency [22] is usually required in
the TTS front-end tasks. And this dependency can not be well
captured by using the previous methods.

To address these issues of the previous methods, we pro-
pose to use stronger text representation extractors to improve
the performance of our front-end tasks. In this work, we use the
bidirectional encoder representations from transformers, a.k.a.
the BERT [23], a recently proposed NLP pre-training method,
and the encoder of a transformer [24] based neural machine
translation (NMT) system [25] to extract latent text represen-
tations with semantic meanings and use them as input features
into task specific models. Both of these two feature extractors
utilize a deep multi-head self-attention structure to capture the
long-term context dependency in text sequences. In our experi-
ments, we applied the extracted representation to the polyphone
disambiguation task, as well as the prosodic word (PW) and
prosodic phrase (PP) prediction tasks. We adopted a multi-layer
feed-forward neural network to predict the correct pronuncia-
tion from the representation of a polyphone character. We also
used an LSTM-based bidirectional RNN-CRF [26, 27, 28] to
predict PP and PW tags using the representation sequence of
a sentence as input. Our experiments show that both BERT
and NMT encoder can help the model to achieve significant
improvement compare with conventional methods. Moreover,
benefiting from the powerful representation ability of the pre-
trained models, we found that PP and PW prediction can be
learned in a single network framework without losing any accu-
racy by using a multi-task training method.

This paper is organized as follows: Section 2 will briefly re-
view the basic background of front-end of Mandarin TTS. The
proposed method will be given in Section 3. Experimental de-
tails and results will be given in Section 4. Lastly in Section 5,
some conclusions and potential future research will be given.

2. Mandarin TTS Front-End

In this section, we will briefly explain the main tasks of the
front-end of Mandarin TTS systems and the conventional ap-
proaches to these tasks. The goal of the front-end of a TTS
system is to extract phonetic and linguistic information require
by back-end acoustic models from the input raw text. Figure
1 shows a typical pipeline of a Mandarin TTS text processing
front-end. It usually contains three main components, including
text normalization, prosodic structure prediction and grapheme-
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Figure 1: A typical pipeline of text processing of a Mandarin
text-to-speech.

to-phoneme (G2P) conversion [29, 30].

2.1. Text normalization

The text normalization module aims to convert written raw text
into its spoken form. E.g. TN should convert input text ’10.5%”
in “ten point five percent”. Rule-based methods, which uti-
lize regular expression matching, is usually adopted to perform
this conversion. Recently, TN is also treated as a sequence-to-
sequence problem handled by an attention-based RNN [18] .

2.2. Polyphone disambiguation

The G2P conversion for Mandarin characters mainly focuses on
polyphone disambiguation. There are thousands of characters
in Mandarin text, among which about one thousand characters
are polyphone characters. This means that each of these charac-
ters has multiple pronunciations. Polyphone disambiguation is
critical for Mandarin TTS since different pronunciation always
results in different meaning of a sentence. Polyphone disam-
biguation is commonly formulated as a classification problem.
Therefore a classifier is need to be learned for each character
to predict its correct pronunciation in given context. For poly-
phone disambiguation, machine learning methods like ME [31],
CART [29] or MLP are also common used. and the traditional
linguistic features (like character, POS, word-terminal syllables
etc.) and word embeddings or LM representations are common
used as input features.

2.3. Prosodic structure prediction

As shown in Figure 1, a typical prosodic structure of Man-
darin TTS system is usually divided into three levels, including
the prosodic word (PW), prosodic phrase (PP) and intonation
phrase (IP). These three levels of prosody reflect three different
length of pause in natural speech signal. Prosodic structure pre-
diction tasks are usually formulated as sequence labeling prob-
lems [27]. A sequence of prosodic boundary labels of break (B)
or no break (NB) should be predicted for each character or word
in input text sequence. Different from other sequence tagging
tasks, such as CWS, POS, NER etc., the prosodic structure pre-
diction of each prosodic level predicts the prosodic boundary
labels under the constraint of corresponding lower-level labels,
e.g. the sequence of prosodic phrases depends on the sequence
of prosodic words as indicated in Figure 1. Prosodic structure
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prediction has been studied over the years, many methods been
proposed, including traditional statistical methods, such as ME
[11], CRF [14] with manually designed linguistic features and
recently proposed RNN-based sequence models [16, 26, 32].
Among these methods, the best reported results were achieved
by a BLSTM-CREF [26] based model using text representation
extracted by a pre-trained an unidirectional language model.

3. Proposed method using pre-trained text
representations

3.1. Transformer based text representations

The main problem of TTS front-end tasks is that there is very
limited amount of training data for each task. Although neural
network based method has been proposed, most of the conven-
tional approaches have poor generalization on data from new
domains since they can not learn the knowledge of a language
from such a small dataset. Unsupervised language representa-
tion learning therefore became a hotspot in the research area of
NLP in recent years. Word embeddings and sentence represen-
tations by RNN based language model were utilized as general
language knowledge to improve the performance of front-end
modules [26]. However, these representations are weak context
representations. Word embeddings are only representation of
unique words without sequential dependencies. On the other
hand, the unidirectional dependency of RNN based language
models make it difficult to extract enough context information
from the word sequence. Besides, the long-term dependency
[22] of a sentence can not be well captured by the recurrent ar-
chitecture of a language model.

In this work, we proposed to use two kinds pre-training
methods to improve the performance of the TTS front-end:

e BERT [23] is a recently proposed unsupervised pre-
training method for general NLP tasks. BERT is essen-
tially a language model that can predict words which has
been masked out in the input word sequence. It has been
reported that the performance of a wide range of NLP
tasks can be improved by using word representation ex-
tracted by BERT.

* NMT is a well studied NLP task which can commonly
access large amount of training data. There are two main
components in a typical NMT model: an encoder and
a decoder. The encoder takes a sequence of words in
source language as input and produces a sequence of
context sensitive dense word vectors, based on which the
decoder will then output a sequence of words in target
language using an attention mechanism.

The transformer [24] architecture is used in both BERT
and NMT encoder. The multi-head self-attention mechanism
enables the model to capture word dependencies on both left
and right side context without any restriction on the position of
words in a sentence. On the other hand, a transformer architec-
ture can be easily scale to deep structure and a larger training
corpus.

3.2. Application to TTS front-end

Figure 2 shows the architecture of our proposed method us-
ing pre-trained text representations for the front-end. The input
Mandarin text is firstly pre-processed by TN and CWS modules.
Word representations are then extracted by BERT and NMT en-
coder. These word representations are sent to task specific mod-
els. In this work, we focused on the prosodic structure predic-
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Figure 2: The architecture of the proposed method using pre-
trained text representation for the front-end

tion and polyphone disambiguation. TN can be accomplished
using a method similar with that of polyphone disambiguation,
therefore it is not discussed in this paper.

3.2.1. Polyphone disambiguation

A straightforward idea for polyphone disambiguation is to use
a separate feedforward neural network as a classifier for each
character. However, for most of the characters, the number of
training samples is less than 1000. In order to address this data
sparsity problem, we use a single compact model for all char-
acters. The categories of all characters are concatenated in out-
put layer and the other layers of all characters share the same
parameters. At inference time, we masked the probabilities of
pronunciations of irrelevant characters in output layer.

3.2.2. BLSTM-CRF based prosodic structure prediction

The RNN-CRF based model architecture has been success-
fully applied to many sequence tagging problems. The appli-
cation of bidirectional LSTM based RNN-CRF (BLSTM-CRF)
in prosodic boundary prediction has been studied as a sequence
tagging task [27, 33, 26]. The detailed architecture of the model
used in this work is shown in Figure 3. Firstly, we use a pre-
trained text encoder to encode a sentence into a sequence of
word/character vectors. A BLSTM-RNN layer then takes these
vectors as input to further produce the input vectors for the CRF
layer. We can use two independent models for predicting PW
and PP respectively. In addition, since we are using charac-
ter/word level text representations in an end-to-end way, we can
simultaneously predict PP and PW with a single model by a
multi-task training.

4. Experiments
4.1. Dataset

We evaluated the proposed representation based methods on
Mandarin dataset. We collected the training corpus for poly-
phone disambiguation and prosodic structure prediction by lin-
guistic experts for our experiments.

For experiments on polyphone disambiguation, we col-
lected a dataset of 300000 sentences. Only one polyphone char-
acter was labeled in each sentence. We collected sentences for
89 frequently used polyphone characters, and there are totally
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Figure 3: Architecture of our BLSTM-CRF based prosodic
structure prediction model. There are two CRF layers, one for
PW, another for PP

202 character-pronunciation pairs in our corpus. At least 500
samples were collected for each pronunciation of each charac-
ter. We split the dataset into three subset of 240000, 30000 and
30000 sentences for training, validation and test respectively.

For the experiments on prosodic structure prediction tasks,
we collected a corpus of 150000 sentences, which was also split
into three subset of 120000, 15000 and 15000 sentences for
training, validation and test respectively.

4.2. Experimental setting

In our experiments, we compared several popular text represen-
tation methods on our tasks. The BERT model we used in our
experiments is pre-trained and released by Google !. It has a
structure of 12-layer transformer with 768 hidden units in each
hidden layer. This character-level model was pre-trained on the
Chinese Wikepedia Corpus.

The NMT encoder we used in our experiments was pre-
trained on a bilingual corpus with more than 100 million
Chinese-English sentence pairs. The NMT model was trained to
translate Chinese sentences into English sentences. We adopted
a 6-layer transformer as the encoder, and there are 512 hidden
units in each of the hidden layers. The encoder takes as input a
sequence of subwords in source language [34].

In order to compare with previous representation model,
we also trained a character-level bidirectional LSTM based lan-
guage model [35]. This model was trained on a 50GB of Chi-
nese news text corpus collected from the Internet.

We use the state vector of the last hidden layer as the charac-
ter representation for all the deep learning based representation
models and built the following systems for the experiments in
this paper:

1. ME: The conventional ME based classifier for poly-
phone disambiguation using designed linguistic features,
including POS tags, the length of words, word combina-
tions left and right context etc [13].

2. CREF: the conventional graphical model based sequence
labeling method utilizing linguistic features similar with
those of ME. The CRF models were applied to PW and
PP prediction as a baseline model in our experiments.

Thttps://github.com/google-research/bert



3. BLM: the method takes the character representation ex-
tracted by character-level bidirectional language model
as input.

4. BERT: the method takes the character representation ex-
tracted by pre-trained BERT as input.

5. NMT: the method takes the character representation ex-
tracted by pre-trained encoder of an NMT model as in-
put.

6. TB: the method that uses feature ensemble by concate-
nating features of BERT and NMT.

7. BERT-MT: a multi-task method that simultaneously
predict PW and PP boundaries in one single model.
4.3. Results and analysis

4.3.1. Evaluation of polyphone disambiguation

(a) (b)
& N e )
R AP 1 .?
& 5 ol -, % .
7 ¢ & & i

(d

Figure 4: The t-SNE visualizations of the character represen-
tations of four frequently used polyphone characters extracted
by BERT. Different colors indicate different pronunciation of a
character:

The BERT is trained to predict randomly missing
words/characters in given sentences. Therefore, the model has
to learn rich semantic information of each word/character in
given context. In order to analyze the space of extracted text
representations, we performed a t-SNE [36] analysis on the rep-
resentation vectors of several polyphone characters on the train-
ing set. Figure 4 presents the t-SNE results of four frequently
used polyphone characters. One can see that there are clear pat-
terns between different pronunciations of the a character. This
make it very easy for the shallow feedforward neural network
based classifier to predict correct pronunciation given the char-
acter representation. Similar patterns were also observed in the
representation space of an NMT encoder.

For the polyphone disambiguation task, we compared the
results of proposed method with two baseline systems of ME
and BLM. The accuracy rates of the compared systems are pre-
sented in Table 1. The results show that transformer based sys-
tems significantly outperform the two baseline systems.

By comparing the three transformer based systems, we can
see that BERT achieved higher accuracy than NMT encoder in
our results, maybe benefit from its deeper structure.

4483

Table 1: Accuracy rate for different systems in Mandarin on the
polyphone disambiguation task

ME
91.34

BLM
94.50

BERT NMT
96.80  96.18

TB
96.94

system
Accuracy

4.3.2. Evaluation of prosodic structure prediction

For the prosodic boundary prediction task, we compare the re-
sults of system NMT with two baseline systems of CRF and
BLM. System BLM serves as a strong baseline system here as
it achieved best performance in previous researches. As one can
see from the results presented in Table 2 that the transformer
based methods significantly outperforms these two baseline sys-
tems on the both tasks of predicting PW and PP boundaries.
However, there are no significant difference between these three
transformer based methods, which means that the NMT encoder
can achieve a similar performance with a much smaller network
structure.

Table 2: The results of F1 scores of different systems on PW and
PP tasks.

prosodic word ~ prosodic phrase

CRF 0.942 0.810
BLM 0.961 0.824
BERT 0.974 0.850
NMT 0.974 0.847

BERT-MT 0.973 0.851

On the other hand, as the transformer based method can ex-
tract rich context sensitive information from the input sequence,
it is quite easy for BERT-MT to predict both PW and PP labels
using a single model with multi-task training. This can reduce
the computational cost of inference at run time. It is difficult to
apply the multi-task training to conventional RNN-CRF based
methods. Because in the conventional prediction pipeline, PP
prediction usually depends on the output of PW prediction.

5. Conclusions

In this paper, we presented an effective method to improve the
performance of TTS front-end text processing using pre-trained
text representations. Two kinds of transformer based text en-
coder were investigated in this paper. One is the BERT learned
in an unsupervised way and the other is the encoder of an NMT
model that trained on bilingual corpus. The experimental re-
sults on polyphone disambiguation and prosodic structure pre-
diction show that the proposed methods significantly improved
the performance comparing with conventional methods as well
as other text representation based methods.

In the future, we will apply the pre-trained transformer text
representations to the other modules of TTS front-end, includ-
ing the text normalization, speaking style prediction, etc.
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